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    Chapter 16   

 Automated Tracking of Zebra fi sh Shoals 
and the Analysis of Shoaling Behavior       

         Noam   Miller       and    Robert   Gerlai     

  Abstract 

 Zebra fi sh spend the majority of their time in groups, called shoals. Shoaling behavior is complex and 
dynamic:  fi sh leave and rejoin the shoal, distances between shoal-members oscillate, and the speed and 
polarization of the shoal change on timescales of seconds to minutes. All these features of shoals can be 
modi fi ed by various pharmacological and environmental—and possibly also genetic—manipulations and a 
thorough characterization of shoaling behavior can therefore be used as an effective assay for complex 
aspects of vertebrate social behavior. We present methods for acquiring and analyzing detailed trajectory 
data from shoals of zebra fi sh and demonstrate how these methods can be used to distinguish episodes of 
shoaling under different conditions. These methods could be further developed to create a standardized 
assay of shoaling behavior that will allow for an in-depth exploration of social behaviors in zebra fi sh.  
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 Zebra fi sh spend the majority of their time in small, cohesive groups 
termed shoals. The term shoal is used to describe an aggregation 
of individuals. Shoaling does not necessarily imply polarization, 
i.e., synchronized swimming direction. Shoaling is a complex, 
dynamic behavior  (  1  )  and can serve as a sensitive assay for a wide 
range of genetic  (  2,   3  )  or pharmacological manipulations  (  4–  7  ) . In 
general, a detailed analysis of zebra fi sh shoaling may lead to a bet-
ter understanding of vertebrate social behaviors. Here, we present 
experimental examples and computational methods for ef fi cient 
and detailed quanti fi cation of zebra fi sh shoaling. 

 Moving in shoals (and herds or  fl ocks) provides multiple advan-
tages in foraging and avoiding predation  (  8  )  and almost half of all 
known  fi sh species shoal at some stage of their lives  (  9  ) . Fish in 
shoals may be better able to detect oncoming predators (this is known 
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as the “many-eyes” effect,  (  10  ) ). This allows each individual mem-
ber of the shoal to spend less time on vigilance  (  11  ) . In addition, a 
 fi sh in a large shoal is less likely to be targeted by a predator (called 
dilution) and predators attacking a large, homogeneous shoal may 
experience sensory or cognitive “confusion,” limiting their ability 
to capture the  fi sh in the shoal. Fish in shoals may also be able to 
locate and utilize food sources otherwise undetectable or unavail-
able to singletons. Last, shoaling presents an obvious advantage in 
cooperative breeding systems and/or in cases where synchronized 
spawning confers selective advantages. 

 Analyzing shoaling behavior relies on the acquisition of 
moment-to-moment trajectories of all members in the shoal. 
Recently, several researchers have begun collecting such trajecto-
ries for a number of species  (  12–  14  )  and these data have allowed 
an unprecedented level of analysis of the nature of collective motion 
and detection of changes resulting from increasingly subtle phar-
macological and environmental manipulations. We and others have 
previously shown how zebra fi sh shoaling is disrupted by, for 
instance, exposure to alcohol  (  6  )  or the threat of predation  (  15  ) . 

 Below we present basic automated video tracking techniques 
for acquiring shoal trajectories and a framework for analyzing the 
resulting data. Most traditional statistical techniques are ill-equipped 
to uncover the regularities in extensive time-series data and we hope 
that the methods presented here will form the nucleus of a stan-
dardized method for quantifying zebra fi sh shoaling. All formulas 
and descriptions of behavioral measures are provided in Table  1 .  

 The techniques we present apply to tracking  fi sh in 2 dimensions 
(2D). We test  fi sh in shallow tanks, which is not only ecologically 

   Table 1 
  Basic measures and their formulas   

 Name  Formula  Description 

 Nearest neighbor 
distance (NND) 

     NND min( )i ijD=   , where 

    2 2( ) ( )ij i j i jD x x y y= − + −    

 Distance between  fi sh  i  and its 
nearest neighbor. The mean 
value is reported (Note 6) 

 Inter-individual 
distance (IID) 

     1
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    2 2( ) ( )ij i j i jD x x y y= − + −    

 Mean distance from  fi sh  i  to 
all others. The mean value 
is reported

 

 Speed      2 2
iS x y= Δ + Δ   , is the distance 

moved in time  Δ  t , usually 0.5 s 

 Momentary speed of  fi sh  i . 
The mean value is reported 

 Polarization 
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movement vector of  fi sh  i  

 Magnitude of the mean 
vector of all  fi sh 
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relevant (zebra fi sh live in small streams and shallow lakes) but also 
biases the distribution of  fi sh in the shoal to the observable two 
dimensions. Results from 3D tracking of shoals (e.g.,  (  12  ) ) are 
suf fi ciently similar to the results obtained with 2D tracking that we 
do not believe the additional experimental and computational 
effort is necessary. For a discussion of techniques for 3D tracking 
see Wu et al.  (  16  ) .  

 

 Adult zebra fi sh 1  should be experimentally naïve and allowed to 
acclimate to the laboratory environment before testing. Additionally, 
we house groups of  fi sh together that are scheduled to be tested 
together for at least a week before the experiment. There is evidence 
to show that zebra fi sh prefer to shoal with familiar conspeci fi cs  (  18  ) . 
Groups should consist of equal numbers of males and females. We 
have tested groups of various sizes from 8 to 50 ( (  15  ) ; unpublished 
data) and the techniques below apply equally to any group size. 

 The design of the testing environment is particularly impor-
tant for later video tracking of the  fi sh (Fig.  1 ). The tank should be 

  2.  Materials

  Fig. 1.    Experimental setup. The inset shows the tank from above. Lights should be placed 
just above the height of the lip of the tank. The camera is placed so that the entire tank is 
visible in the image.       

   1   Zebra fi sh shoaling develops gradually from around 7 days of age to adulthood  (  17  ) . We do not give any 
data on juvenile shoaling but the techniques we present are broadly applicable to any shoaling  fi sh.  
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white if possible, to provide high contrast with the  fi sh. This color 
choice is purely technical as there is some controversy in the literature 
as to light/dark preferences in zebra fi sh. However, zebra fi sh—
which are mildly counter-shaded—are more visible from above 
against a light background. A white, brightly lit tank may also 
induce low levels of fear, which will enhance shoaling tendencies. 
The tank should be large enough for the  fi sh to swim freely and to 
allow the shoal to disperse. We have found that a tank approxi-
mately 1 m in diameter is suf fi ciently large for groups of up to 50 
adult zebra fi sh. A video camera is mounted above the tank such 
that the entire tank is visible in the frame of the video. We recom-
mend recording videos at high resolution (ideally 1920 × 1080 
 pixels) and at no less than 10 frames per second (fps).  

 The tank should be lit by  fl uorescent lights. To avoid re fl ection 
from the lights in the video image and to ensure an even level of 
illumination in all parts of the tank, the lights are placed at the sides 
of the tank, just above the lip of the tank (Fig.  1 ). The tank is  fi lled 
with water to a depth of about 10 cm.  

 

 Fish are gently netted from their home tank into a plastic beaker. If 
the experiment involves exposure to a pharmacological agent, the 
 fi sh are placed into a small tank in which they are exposed to the 
drug  (  6  ) . After exposure (and recovery, if necessary), the  fi sh are 
transferred in the beaker to the testing tank. The camera is started 
before the  fi sh are placed in the tank, to provide a reference image of 
the tank for tracking purposes. The  fi sh are then carefully released 
into the center of the tank. It is important to allow the  fi sh time to 
habituate to the testing tank. We have found that shoaling character-
istics stabilize after about 5 min in the testing tank and we therefore 
ignore the trajectories of the  fi sh for the  fi rst 5 min of each session. 
Different experiments will require different session lengths but we 
have found that shoaling can be characterized in sessions as short as 
10 min. The water in the testing tank is replaced periodically (usually 
after every two groups) to control for possible odor cues left by pre-
vious groups. At the end of the session, the  fi sh are gently netted 
back into the beaker and returned to their home tank.  

 

 Video  fi les downloaded from the camera will often need to be 
converted into a standard format to be tracked. This can be achieved 

  3.  Procedure

  4.  Video Tracking
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using a number of video converter programs (we recommend using 
open-source video editors such as ffmpeg or VirtualDub; Note 1). 
Once videos have been converted, the positions of all the  fi sh in 
each frame of the video are pinpointed using a tracking program. 
Below, we present a step-by-step guide to constructing an auto-
mated tracking program. Details of similar applications have been 
described in the literature  (  13,   16,   19  ) . A more specialized applica-
tion, speci fi cally for tracking pairs of moving zebra fi sh, is described 
by Kato et al.  (  20  ) . Computer applications that can reliably track a 
single moving individual are widespread (e.g., Noldus’s Ethovision) 
and are not discussed here as most of them cannot track multiple 
identical targets in the same arena. 

 Several general principles of video tracking, conserved across 
almost all current applications, may be enumerated. In most cases, 
target locations are identi fi ed by subtracting the image of interest 
(a single frame of video) from a reference image of the empty test-
ing enclosure, without the targets. Reference images are either 
frames of video  fi lmed before the subjects are introduced into the 
arena, or are created digitally  post hoc  by erasing the targets using 
image editing software (e.g.,  (  21  ) ) or averaging multiple images 
together (e.g.,  (  12  ) ; Note 2). Any pixels in which the difference 
between the reference and target images exceeds some threshold 
are  fl agged as part of a target. 

 Once the locations of the targets in a single frame have been 
identi fi ed, most current applications attempt to reconstruct the 
trajectory of each target through successive frames, i.e., through 
time. A detailed (and technical) discussion of this process is given 
by Wu et al.  (  16  ) . The computation required may be thought of as 
mapping each target in frame T to the corresponding target in 
frame T-1. Most systems use a regression that  fi nds the mapping 
giving the smallest summed spatial deviation of targets between 
frames. The density (in time) of tracked frames must be high so 
that targets do not move very far between successive frames. 

 Finally, the most computationally dif fi cult problem faced by all 
video tracking systems arises when targets occlude. Occlusion 
occurs when two or more targets move under one another or are 
so close that they appear as one target (Fig.  2 ). The dif fi culty lies in 
deciding which of the targets after separation corresponds to each 
target before the occlusion (Fig.  2 ). Experimenters have sought to 
reduce the severity of this problem by testing  fi sh in very shallow 
water (sometimes as little as 2 cm; e.g.,  (  22  ) ) or by tracking targets 
in all three dimensions using multiple cameras (e.g.,  (  12,   14  ) ), 
a solution that creates its own problems. The most common solu-
tion to this problem, which we also adopt, is presented below.  
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 One simple solution to the dif fi culties of automated tracking is 
to allow a human user to perform the most computationally dif fi cult 
parts of the tracking. Many manual tracking applications exist and, 
where the number of targets and duration of video to be tracked 
are not too large, have been used to great effect (e.g.,  (  15  ) ). Most 
applications automate all the intervening steps to increase the 
ef fi ciency of the coding (an excellent free example is ImageJ’s 
MTrackJ plugin; Note 1).  

 

     1.     Image subtraction : the red, green, and blue values are summed 
for each pixel of the reference image and for the corresponding 
pixel in the target image. The difference between the values is 

  5.  Step-by-Step 
Instructions for 
Writing an 
Automated 
Tracking Program

  Fig. 2.    Resolving target occlusions. Occlusions occur when two or more  fi sh occupy the 
same position in the video image. The  fi gure shows the positions of two  fi sh before ( a ), 
during ( b ), and after ( c ) an occlusion. To determine which  fi sh in ( c ) corresponds to the  fi sh 
in ( a ), we assume that each  fi sh does not turn during the occlusion (see text for details).       
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computed. A user-de fi ned threshold is used to identify pixels 
that may belong to a target.  

    2.     Clumping : the computational challenge here is to decide which 
pixels belong to the same target ( fi sh) and which belong to an 
adjacent target. Each clump is seeded from a single  fl agged 
pixel and “grows” outwards by recruiting other above-threshold 
pixels that are close enough to be considered part of the same 
target. The growth process is iterated until the target no longer 
grows with repeated iterations. The next unassigned pixel is 
used to seed the next clump and the process repeats until all 
above-threshold pixels have been assigned to a clump.  

    3.     Modifying clumps : some clumps will be too large or too small to 
be one single  fi sh. The minimum and maximum number of 
pixels that a “real” target can occupy are determined by the 
user. Clumps consisting of fewer pixels than the minimum are 
removed from further consideration. Clumps consisting of 
more than the maximum number of pixels are assumed to have 
resulted from partial occlusion and are successively split until 
each clump contains fewer than the maximum number of pixels. 
Each over-sized clump is split along its shortest axis. If any 
resulting clump is still made up of more than the maximum 
number of pixels, it is split again. The minimum and maximum 
values must be carefully chosen to avoid splitting single  fi sh into 
multiple targets or ignoring small  fi sh altogether (Note 3).  

    4.     Target identi fi cation : the mean location of all the pixels consti-
tuting a particular clump is taken as the location of a target in 
the current frame.  

    5.     Trajectories : this step assigns an identity to each target in each 
frame and tries to ensure that identities are consistent across 
frames. Identities are assigned based on the smallest summed 
deviation of target locations between successive frames. For 
each frame, the summed distance moved by all targets is calcu-
lated for every possible mapping of target identities. The mini-
mal solution is selected. Some applications limit the regression 
results using a trajectory prediction algorithm, which assumes 
a maximal turning rate of the  fi sh (e.g.,  (  13  ) ). We do not apply 
trajectory prediction since zebra fi sh frequently turn abruptly 
and quickly.     

 In addition to the above basic steps, we suggest using one 
more simple technique to ensure that targets are not misidenti fi ed 
during tracking. In some frames, one or more  fi sh may be missed 
completely. We therefore include a user-de fi ned movement thresh-
old in our tracking algorithm. If the closest match of a target is 
further than the threshold distance (in other words, the target 
“moved” more than the threshold distance in one frame), it is 
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assumed that the target was not tracked in that frame. Target identities 
are remapped (Step 5), excluding the missing target. The closest 
of any remaining unassigned targets after the mapping is complete 
is tentatively presumed to be the missing target. The application 
pauses and the user is required to manually identify the location 
of the missing target. The correct application of this method 
requires that the movement threshold be carefully selected. The 
threshold should be just larger than the distance a  fi sh could move 
in a single frame. 

 Finally, we discuss how to deal with occlusions. A simple 
method is to allow the user to manually resolve all occlusions 
(e.g.,  (  12  ) ). Alternatively, we suggest one automated method 
(Fig.  2 ; see also ref  (  16  ) ). It is important to note that occlusions 
often involve more than two  fi sh (sometimes all the  fi sh), and 
even an experienced observer is sometimes unable to unambigu-
ously assign target identities. During an occlusion, we assign all 
participating  fi sh the same coordinates (which may be modi fi ed 
later when the trajectories are smoothed). We then assume that 
 fi sh continue on their path with minimal turning during an occlu-
sion (as in Fig.  2 ). We calculate the angle of turn of each partici-
pating  fi sh under each possible combination of target identities 
and select the option that minimizes the summed total turn angle. 
Delcourt et al.  (  13  )  have recently described an application that 
uses the same method. 

 An automated tracking system designed for a particular appli-
cation will be more effective than a generic program. Any auto-
mated system embodies certain assumptions about the experimental 
parameters it is trying to uncover, and ours is no exception. 
Speci fi cally, the clumping and occlusion resolution methods we 
propose will work best when occlusions occur only some of the 
time. The assumption that  fi sh turn minimally during an occlusion, 
for example, becomes increasingly less valid as the duration of an 
occlusion increases. The ability to distinguish the paths of  fi sh also 
decreases as more  fi sh participate in any given occlusion. We have 
found that shoals of zebra fi sh do not occlude too frequently for the 
method described here to be used effectively, though the number 
and duration of occlusions increase with increasing group density, 
for obvious reasons. 

 In addition, our method is designed to work well when the 
targets are small on the image. We do not use the size of a target 
or its outline to distinguish between individuals, a method that 
may be useful when tracking smaller numbers of larger (and more 
diverse) organisms. In our experimental setup an average-sized 
zebra fi sh (about 3.5 cm in length) takes up about 150–250 pixels 
on the video image (at a resolution of 1920 × 1080 pixels).  
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 Trajectory data consist of multiple long time-series in which 
adjacent—and also more distant—data points are nonindependent. 
In addition, the relationships between time-series’ (i.e., between 
the trajectories of different  fi sh) are of interest. Standard statistical 
methods commonly employed in psychology research are unable 
to effectively analyze such data and we therefore present a set of 
techniques that extract the basic relationships in trajectory data. It is 
our hope that this set of methods will be enlarged, improved, and 
eventually standardized as more trajectory data are accumulated 
and the most informative tests are identi fi ed. Table  2  presents a list 
of the endpoints we suggest using to characterize shoaling, dis-
cussed in detail below. A  Mathematica  (Wolfram Technologies) 
notebook to calculate all measures is available from the correspond-
ing author.  

  A common method of analyzing dense time-series’ is to resample 
the data at longer intervals, thus reducing the nonindependence of 
adjacent points. The resampling interval chosen is usually the  fi rst 
zero-crossing of the autocorrelation function of the data, i.e., the 
interval at which consecutive values are maximally uncorrelated 
(e.g., using behavioral data see ref  (  23  ) ). This method is less than 
ideal, since autocorrelations in time-series’ represent two indepen-
dent sources of correlation: one resulting from the proximity in 
time of consecutive measurements; the second from behavioral 
consistency in the subjects, which we wish to uncover, not remove. 
We suggest, instead, to simply reduce the effective N for each sta-
tistical test by a  fi xed proportion (we commonly use the number of 
frames coded per second).  

  The  fi rst step in analyzing trajectory data is smoothing the trajec-
tories. Raw trajectories will be noisy due to changes in the  fi sh’s 
body shape during swimming (which may affect where the track-
ing system places the center of the target), the limited spatial and 
temporal resolution of the video, and errors of the tracking system. 

  6.  Analysis

  6.1.  Resampling

  6.2.  Smoothing

   Table 2 
  Behavioral endpoints   

 Number and duration of excursions away from the shoal  (  26  )  

 Cross-correlation coef fi cients of NND, IID, polarization, and speed (Note 7) 

 Comparison of distributions of NND, IID, polarization, and speed 

 Typical oscillation frequencies of NND, IID, and polarization  (  28  )  
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Trajectories are therefore smoothed using a weighted moving 
average with a window width of 0.5 s  (  24  ) . In addition, all the 
coordinates are rescaled—using the known width of the arena—so 
that all values are in centimeters. The origin of the axes is placed in 
the lower left-hand corner so that all the positions have positive 
coordinates for simplicity.  

  To develop a clear picture of a given episode of shoaling it is obvi-
ously important to exclude from analysis  fi sh that are not members 
of the shoal. We  (  25  )  have recently devised an algorithm for deter-
mining shoal membership that identi fi es excursions of individuals 
or subgroups away from a shoal. In addition to permitting the 
exclusion of  fi sh that have temporarily left the shoal, the number 
and duration of excursions provide additional information about 
the characteristics of the shoal (see Fig.  3  and ref  (  25  ) ).  

 We focus our analysis on four basic descriptive statistics (Table  1 ): 
the Nearest Neighbor Distance (NND), Inter-Individual Distance 
(IID), Polarization, and Speed. Each measure describes a univariate 
time-series and we utilize both the distribution and dynamics of each 
one (below). In addition, it is often informative to examine the cor-
relations between the different measures. For instance, it has been 
reported that shoal speed and polarization correlate (e.g.,  (  12  ) ), and 
that polarization increases with the size of the group  (  26  ) . In addi-
tion, NND and IID often correlate strongly. Simply comparing the 
correlation coef fi cients of these measures between experimental con-
ditions may uncover interesting effects on shoaling behavior.  

  6.3.  Shoal Membership

  Fig. 3.    The effects of repeated exposure to the testing tank on excursion durations. Distributions of excursion durations 
(episodes where one or more  fi sh left the main shoal;  (  25  ) ) across multiple exposures to the testing tank. As  fi sh habituate 
to the testing environment the shoal gradually dissolves and excursions become longer. See  (  25  )  for more details.       
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  The density distribution of each measure is constructed using a 
kernel density estimator (essentially a smoothed histogram; see ref 
 (  24  ) ). Distributions from different experimental conditions are 
compared using a two-sample Kolmogorov–Smirnov test (with 
N’s modi fi ed as described above). This method is comparable to 
examining the mean of each measure but has the added advantage 
that it can detect differences in the distributions even when their 
means are very similar and takes into account differences in vari-
ance between distributions. For example, Fig.  3  presents the distri-
butions of durations of excursions away from a shoal as a function 
of repeated exposures to a testing tank  (  25  ) , clearly showing the 
distribution spreading despite little change in the location of the 
distribution’s peak.  

  We have previously shown that the IID of zebra fi sh shoals oscillates 
with a distinctive period  (  27  ) . Aoki  (  28  )  showed similar oscillations 
in the NND of  fi eld gudgeon shoals and Viscido et al.  (  12  )  showed 
that the polarization of shoals of giant danios ( Danio aequipinna-
tus ) oscillates as well. Thus, none of these measures is constant 
across time, even within a single short testing session. We therefore 
examine the time-series of each measure for periodic components. 
Periodic oscillations in the time-series’ are examined using the dis-
crete Fourier transform of the data  (  27  ) . The Fast Fourier Transform 
(FFT) algorithm is used to calculate the periodogram of each time-
series (Note 4). Peaks in the periodogram represent potentially 
signi fi cant oscillation periods in the time-series. In order to deter-
mine which of the periodogram peaks are signi fi cant, we use the 
Lomb–Scargle test ( (  29,   30  ) ; Note 5). For each measure, the distri-
bution of signi fi cant peaks (pooled from all sessions under the same 
experimental condition) is constructed. Distributions are compared 
to each other using a KS test (with N’s unmodi fi ed in this case, as 
the peaks of a periodogram are independent of each other;  (  27  ) ). 

 In summary, we suggest that the measures above provide, in 
combination, a multi-dimensional characterization of an episode of 
shoaling. There are, of course, many more measures that could be 
extracted from shoal trajectories and which might reliably distin-
guish conditions of interest from each other. For instance, some 
researchers have examined the distances and bearings to further 
neighbors (i.e., not just the nearest neighbor; e.g.,  (  31  ) ). The set 
of measures we have selected (Table  2 ), however, are easy to calcu-
late and compare across groups and, in our experience, character-
ize shoaling episodes thoroughly. Comparing the behavioral 
pro fi les of shoals under different genetic, environmental, or phar-
macological conditions will allow researchers to determine the 
effects of these manipulations on social behavior in zebra fi sh. The 
complexity of shoaling behavior and the sensitivity and depth of 
the suite of measures suggested here will permit more subtle effects 
to be detected than with traditional behavioral assays.   

  6.4.  Measure 
Distributions

  6.5.  Measure 
Dynamics
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  1. There are several powerful video- and image-processing programs 
that are open-source and available for download free of charge. 
These can be of    tremendous help in acquiring trajectory data: 
 ffmpeg : a powerful command-line video converter and editor 
(  http://www.ffmpeg.org    );  VirtualDub : a video editor; can 
also convert videos to AVI (  http://www.virtualdub.org    ); 
 ImageJ : image editor; videos can be loaded as stacks of images 
(  http://rsbweb.nih.gov/ij    );  MtrackJ : a plugin for manual 
tracking in ImageJ (  http://www.imagescience.org/meijering/
software/mtrackj    ). 

  2. If a reference image of the empty testing enclosure is not  fi lmed 
there are two simple methods for generating one  post hoc . First, 
image editing software (such as Adobe’s Photoshop) can be 
used: take two images from the video in which the  fi sh are in 
different parts of the tank; copy the white space from one image 
and paste it over the  fi sh in the second image; include part of 
the tank edge in the image to assist in correctly aligning the 
two images. A second, somewhat more robust method is to 
average together multiple images from the video. This has the 
effect of smoothing out the moving targets and retaining the 
background: take multiple images from the video (at least 100) 
in which the shoal occupies different positions in the tank; for 
each pixel position, average together the red, green, and blue 
pixel values from all the images; use these means for the red, 
green, and blue values of the pixels in the reference image. 

  3. When two or more  fi sh are partially occluding a single pixel 
clump may contain the images of all of them. When the clump 
is divided, some pixels may be incorrectly assigned. Since the 
targets are very close together by de fi nition, this will have a 
minimal effect on the  fi nal position of the target. Nonetheless, 
to minimize this effect we split clumps along their shortest axis 
(the shortest line that goes through the clump centroid) which 
will often separate them into their component targets. 

  4. The periodogram is a Fourier power spectrum of a discretely 
sampled time-series. It expresses the power of each harmonic 
in the data as a function of its period. The periodogram of a 
time-series  X ( t ) at period   ω   is given by  (  31  ) , 

    
2 21 1

0 0

1
( ) ( ) cos[ ] ( ) sin[ ]

T T

t t

I X t t X t t
N

− −

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= × + ×⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑w w w   , where 

 N  is the sample size. 
  5. The Lomb–Scargle test evaluates the signi fi cance of peaks in a 

periodogram. The following is taken from Hernandez    ( (  29  ) ; 

  7.  Notes

http://www.ffmpeg.org
http://www.virtualdub.org
http://rsbweb.nih.gov/ij
http://www.imagescience.org/meijering/software/mtrackj
http://www.imagescience.org/meijering/software/mtrackj
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see also  (  30  ) ). De fi ne a test statistic     2( ) / 2 YI=g w s   , where     2
Ys    is 

the variance of the time-series and  I   (w)   is the value (power) of 
the periodogram at period  w . Then     /2 /2( ) 1 (1 e )Z NP z −> = − −g   , 
where  N  is the sample size and  z  is any value to be exceeded. 
Thus, a signi fi cant peak is one for which     1/

02 log(1 )nP> − × −g   , 
where  n  =  N /2,  N  is the sample size, and  P  0  is the required 
signi fi cance level (e.g., 0.05). Note that the value of   γ   depends 
on the variance of the data (and not only on the power of the 
individual periodogram peak) and thus the critical value for 
signi fi cance will vary between datasets. 

  6. During occlusions, the NND of all participating individuals 
will be 0 (as they are all given the same coordinates). We sug-
gest excluding such cases from the analysis. 

  7. Each of the measures we present describes a univariate time-
series. Thus, for each measure it is also possible to construct an 
autocorrelation function, though we have found these to be 
largely uninformative. However, the cross-correlations of the 
time-series’ may reveal the structure of the shoal in greater 
detail. For instance, NND and IID will likely correlate more 
highly in a more evenly spaced shoal.      
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